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ADS Fission In a Molten Salt Core
 Extract the minor actinides and long-lived
fission products from spent fuel into molten salt

— Pyroprocessing and electroseparation
— Developed at ANL, INL, PRIDE
— Never separate Pu from other TRU

 Fast neutronics in a subcritical moletn salt core
— Fastest neutron spectrum ever designed <E,> =1 MeV
— Burns all the transuranics together at the same rate
— No thermal shock when drive beam Is interrupted
— Cannot go critical, cannot overtemp even if power fails

NAPAC'13 — MOZAB1



Molten salt fuel elimi
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A molten salt core optimizes TRU-burning

* The TRU contents can be extracted from UNF
using pyroprocessing technology
developed at ANL and INL.

* The molten salt serves as
spallation target, moderator,
and fissile inventory.

* The molten salt flow on the beam wmdow makes
delivery of a 2.7 MW proton beam realistic.

* The core Is desighed to provide passive cooling of
decay heat in event that HX flow were lost.
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* Molten salt core — simple to fuel, simple to recycle
— Every 3 months add 90 kg of TRU to replace what was burned
— Every 5 years, transfer fuel salt from core to
remove fission products, then return to core
— Fuel salt i1s 100% contained in 5 layers for
5 years of operation

 Drive the subcritical core with proton beam
— Stack of 3 cyclotrons

— Drives 3 ADSMS cores "b
— Modulate current 9=>12 mA for const P, — AN —

— 5:1 Energy Amplifier

=
—
—
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290 MW ADAM Core

three 2.8 MW proton drive beams

Secondary salt manifold —
Molten salt fuel:

70 NaCl — 15 TRUCI, — 13
ucl,

Fast fraction 20% E _>1 MeV

Salt pump

Primary heat exchanger

Ni/Hastelloy vessel
Spallation window

ADS Core All fuel salt in one vessel

2m575-675 C operating temp

Pb reflector
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The molten salt chemistry is important

* LiF-based salts were used in the original MSRE, and have
been proposed for many designs of critical and subcritical
molten salt cores.

* LiF has several problems for a TRU-burner:

— The light elements moderate the neutron spectrum;

— Multiple ionization states of TRU elements are metastable,
including volatile species (analogs of UF).

— LiF is corrosive, which presents a challenge for the lifetime of
core vessel and HX components.

— Loading the necessary mole% of TRU would push a F-based salt
beyond the eutectic limit at reasonable operating temp — TRU
salt could drop out of the mixture if the salt freezes.

* All of these issues are resolved by using TRUCI;-Na(Cl.
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Extracting TRU from UNF fuel bundles

ADSMS Salt

Preparation
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Neutronics for Isoburning
One batch of UNF has a ton of 23°Pu

Non-proliferation — keep Pu with intensely
radioactive ingredients — TRU, FP

Strategy — we extract all the TRU elements together
from UNF; we destroy them together -

The fission cross-sections for

Pu, TRU are equal for E, > 1 MeV
But for E, <1 MeV MA fissions
10 times less than 23°Pu
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Choice of criticality k

 We need to run the core subcritical
— 239Pu has 3x fewer delayed neutrons than %3°U
— 241Am has 5x fewer delayed neutrons than %3°U
— 239pu fissions faster than 2*!Am =2 neutronics shifts
— TRU-burning is a challenge for any critical core design.

e Suppose cooling is lost...

* Passive heat pipes remove decay heat
* The salt cannot freeze — k¢ has strong negative temp coeff.

* Design core to operate with k= 0.97.

e Core cannot go critical under any of the many failure
modes considered.

 But we need lots of proton drive...
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Each 290 MW, ADAM core requires 3 x 4 mA of 800 MeV
proton drive beams, and destroys 130 kg/year of TRU.
Each GW, nuclear plant produces 390 kg/year of TRU.
So how do we make 9 x 4 mA of 800 MeV protons?

The first cvclotron.

invented by Ernest Lawrence,
1930 at Berkeley

PSI operates the highest power accelerator in the
world: 2.3 mA @ 590 MeV

The cyclotron 1s among the oldest of particle accelerators, and 1t still holds the
world record for the highest beam power — 1.3 MW.

Even teenagers can bulld one: _ _ . N




Current limits in cyclotrons:
1) Overlapping bunches in successive orbits
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http://cas.web.cern.ch/cas/Bilbao-2011/Lectures/Seidel.pdf

http://www.nscl.msu.edu/~marti/publications/beamdynamics_ganil
98/beamdynamics_final.pdf

Overlap of N bunches on successive orbits produces N x
greater space charge tune shift,

non-linear effects at edges of overlap.
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2) Weak focusing, Resonance crossing

Cyclotrons are intrinsically weak- el
focusing accelerators 15 T
e Rely upon fringe fields -39
* Low tune requires larger aperture S
 Tune evolves during acceleration o 1 o
e Crosses resonances <

Scaling, Non-scaling FFAG utilize non- 95 575
linear fields -
* Rich spectrum of unstable fixed pts

1 15 2 2.5 3
vI‘

Space charge shifts, broadens resonances, feeds synchro-betatron
Even if a low-charge bunch accelerates smoothly, a high-charge
bunch may undergo breakup even during rapid acceleration
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Hence the Strong-Focusing Cyclotron...

SRF Cavities

Warm-Ilron Flux Return

Warm Shielding Fins

Beam Transport Channels Cold-Iron Pole Piece

e SRF cavities provide 20 MeV/turn energy gain - fully separate orbits
« Sectors are simple radial wedges - optimum for integrating SRF
«rrBeamvtransport channels control betatron tunes, isochronicity 14



BTCs control tune, |sochron|C|ty

Uniform gradient in each channel: exceIIent linear dynamics
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We inject 2.8 MW protons through a 3
mm-thick Hastelloy window

We direct a dedicated molten salt flow on the window

1n the HX circuit.
% Streamline: Velocity field Surface: Temperature {degC)
€ | - -
Beam Window ..E ggg [ ] g : A 67111
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Flow chimne*,r BUITACE: VON MISSS SCress (Mra) -
“agl A 90,991
Protons pass through window, deposit most of their 37 o
. 36 -
energy in molten salt. 35 | 80
34+ 60
~22 kW is deposited in the 3 mm Hastelloy window. 33| 50
. . Az 30
Max temp gradient ~60 C, max von Mises stress ~60 MPa. 31, 20
b e

Should be fine, we will do experiments to verify. 0.05 01 ¥ 2.9889x107



Control all orbits:
betatron tunes, isochronicity, position

TAMU100: 6.5 100 MeV TAMUB8O00: 100=>»800 MeV

If any one of the 10 rf cavities malfunctions, increase gradient in the remaining
9 to maintain energy gain/turn, use trim dipoles in the beam transport channels
wie majptain equilibrium orbit unchanged. Works like a ‘spiral linac'.



We have simulated spiral transmission line, including
x/y coupling, synchrobetatron, space charge
Poincare Piots of 1-5 ¢ contours in TAMU100

3.5 mA beam

First lock tune to 4 e
favorable operating - - (O
point: 5

o

Injection 40 MgV Extraction

Now change the tune to
excite a 7t order resonance

We are seeing the origins of the current limits in PSI from overlapping bunches,
tune trajectory. Both are cured in the SFC.
nANextzstudies: beam loading of cavities, wake fields... 18



Transverse phase space of 10 mA bunch

First at injection:
x/y profile
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wertical angle [rad] (RMS: 2.26e-04 [rad])

Now look at effects of synchrobetatron and space
charge with 10 mA at extraction:

Move tunes near integer fraction resonances to observe growth of islands

B -4 0 2 4 B

; -2

1/3 order integer effect 1/5 order integer effect
1/5-order islands stay clumped, 1/3-order islands are being driven. Likely driving
term is edge fields of sectors (6-fold sector geometry). We are evaluating use of
sextupoles at sector edges to suppress growth.




Now find tunes for all particles on the 5 s contour In a
10 mA beam accelerated to 800 MeV:

Since we can control tune using s«f—8&- - + — . ’_5
BTCs, we can place the SN f N
operating point so that no
significant resonance is crossed
by any beam out to 56

We are exploring placement of
4 families of sextupole
correctors after each sector;
We expect that to enable us to
push further in current...
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To destroy TRU generated from a GW, power plant:
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Each 800 MeV SFC
12 mA current =»3 beams

Y Total 30 MW CW:

9 drive beams
3 ADSMS cores




Compare performance for TRU-
burning between ADAM and three
flavors of critical fast reactors:

Critical reactors to burn TRU must operate with fast
spectrum and non-H coolant/moderator:

e Sodium-cooled fast reactor SFR
 High-temperature gas fast reactor GFR
e Lead-cooled fast reactor LFR

System ADAM  SFR  GFR LFR

Net TRU Destruction 0.84 0.74 0.76 0.75 g/MW,-day

ADAM burns TRU as well as
the best critical core yet
designed, it operates with

21 180 Gwd/tHM  smallest TRU inventory, and it

dTRU/TRU 0.056 0.086 0.049 0.048 /year has no potentially disastrous

RNpHith e ndVIdzTaiwo, PHYSOR-2006, ANS Topical Meeting, Vancouver, 9/2006. failure modes. 23




Summary: ADAM is a safe, effective
method for destroying the TRU in UNF

* One ADAM system destroys TRU at the same rate that it is made by
one GW, nuclear power plant.

* |talsogenerates 280 MW, of new electric power —an energy
amplifier with a gain of 5.

e |tis safe to operate — there are no failure modes that could produce
disastrous consequences — see next talk.

» Estimated cost of one ADAM facility ~S1 billion, net cost of TRU
destruction comparable to nuclear fuel fee.

e But how can we prove the ADAM technology at a cost <<SB?
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We can miniaturize ADAM yet preserve

all elements of its performance

Reduce core size 560 liters = 60 liters
Initial operation with lanthanide surrogate fuel — no actinides...
The shift to actinide fuel:
* Increase TRUCI; fraction in the fuel salt 15%=» 60%
e Criticality remains the same =0.97
Reduce proton drive beam energy 800 MeV =150 MeV
e Spallation yield decreases 14=>1
Test all ADAM technology under parameters of full system.
Total TRU required = 220 kg - ~ amount recoverable from EBR2 fuel
Estimated total project cost $100 million.

System SFR GFR LFR SABR ADAM

Thermal Power Q 840 600 840 3000 290 5.46 16.38 M\

ADS proton energy = 800 150 150 Me

ADS beam power Po 8 0.5 15 M\

Net TRU Destruction 0.74 0.76 0.75 1 0.84 1 1 kgl

Core Power Density q 300 103 77 73 207 64 192 Wi
Outlet temperature T max 510 850 560 650 665 695 695 C
Thermal Efficiency hy, 38% 45% 43% 44% 44% 44%

TRU Inventory T 2250 3420 4078 36000 1733 220 220 kg

Fuel Volume Fraction 22% 10% 12% 15% 100% 100% 100%

TRU Enrichment T/U 44-56 % 57% 46-59% 100% 53% 100% 100% TRU/HM
Fuel Burnup 177 221 180 249 129.5 9.1 228  GWI/THM
dTRU/TRU 8.6% 4.9% 48% 3.0% 5.6% 1.0% 25%  lyear

25



Destroying transuranics is the
gift we can give our future
generations...

Our plans to make it all happen:

e 2014-2017 Build 70 MeV SFC for medical isotope synthesis
e 2017-2019 Build baby-ADAM

e 2020-2022 Commission with La surrogate fuel

e 2022 Operate baby-ADAM with TRU/U fuel
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