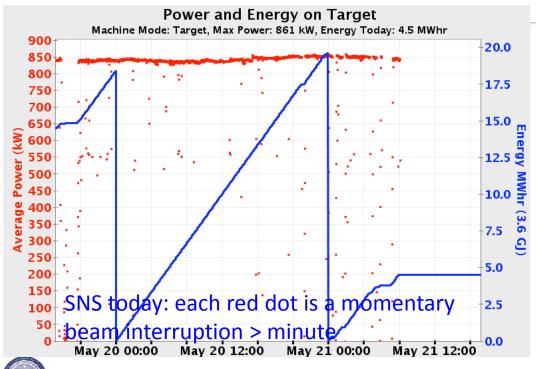
Accelerator-Driven subcritical fission in A Molten salt core: Closing the Nuclear Fuel Cycle for Green Nuclear Energy

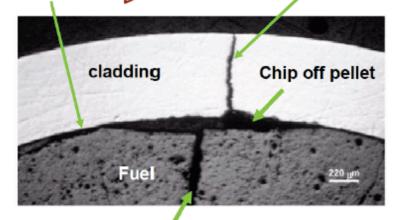
Peter McIntyre, Texas A&M University
For the ADAM Collaboration


NAPAC'13 – MOZAB1

ADS Fission in a Molten Salt Core

- Extract the minor actinides and long-lived fission products from spent fuel into molten salt
 - Pyroprocessing and electroseparation
 - Developed at ANL, INL, PRIDE
 - Never separate Pu from other TRU
- Fast neutronics in a subcritical moletn salt core
 - Fastest neutron spectrum ever designed $\langle E_n \rangle = 1 \text{ MeV}$
 - Burns all the transuranics together at the same rate
 - No thermal shock when drive beam is interrupted
 - Cannot go critical, cannot overtemp even if power fails

NAPAC'13 – MOZAB1


Molten salt fuel eliminates thermal shock

fission gases and CO

Pellet-cladding interaction

Gap closes due to PWK
fuel swelling is calor Stress-corrosion crack

Thermal-stress crack (fission-product path)

As-fabricated Irradiated

OPyC

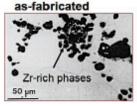
SiC

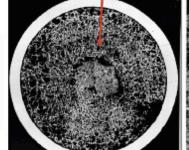
IPyC

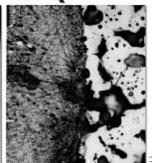
Suffer layer

Kernel

• Xe and Kr released from fuel kernel


Probably failed by overpressure due to


- Irradiation growth: ~ 3% at 14% burnup of metal atoms
- Fuel swelling and fuel-cladding mechanical interaction (FCMI)
- Gas release
- Fuel-cladding chemical interaction (FOC)
- Fuel constituent redistribution Low- Metting Phase

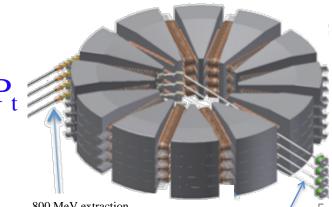

La, Ce, Pr, Nd, Pu react with SS cladding

D. Olander

ADSMS

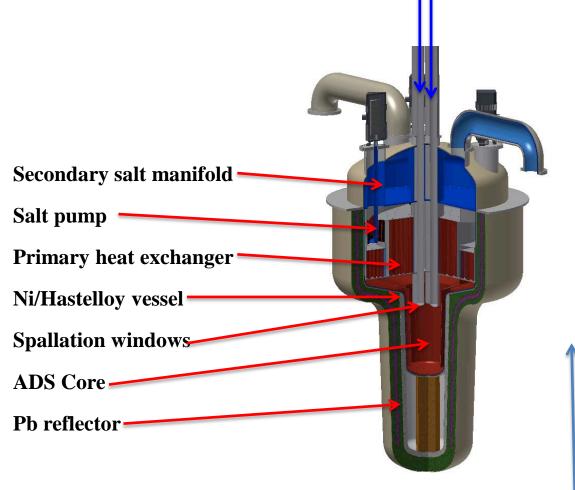
NAZOAO,13 2010 @Zetleh of carbon in buffer layer

· oxygen liberated from (U,Pu)O2,


.

A molten salt core optimizes TRU-burning

- The TRU contents can be extracted from UNF using pyroprocessing technology developed at ANL and INL.
- The molten salt serves as spallation target, moderator, and fissile inventory.
- The molten salt flow on the beam window makes delivery of a 2.7 MW proton beam realistic.
- The core is designed to provide passive cooling of decay heat in event that HX flow were lost.


4

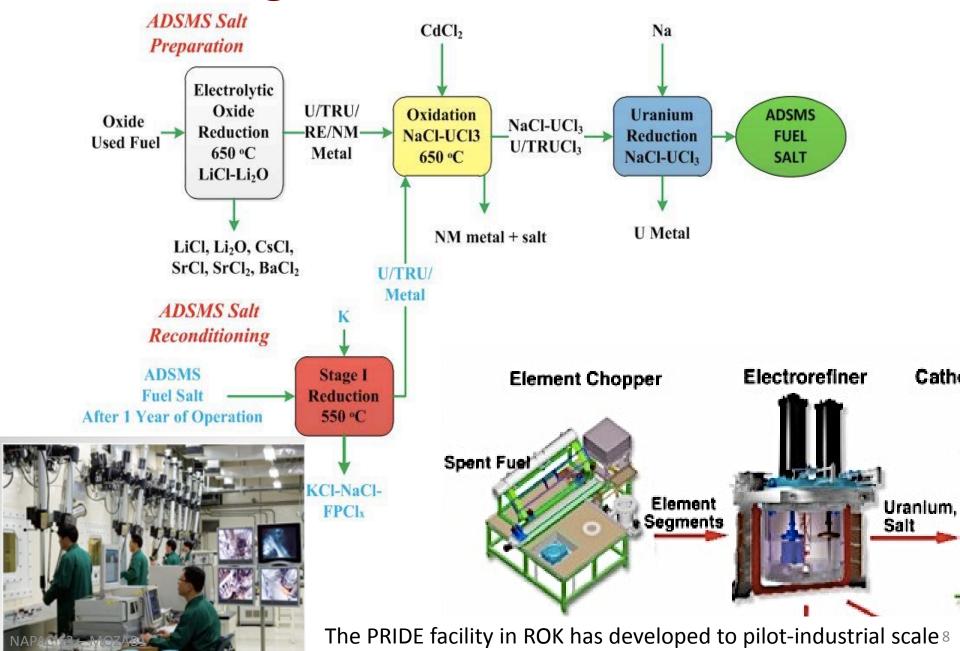
- Molten salt core simple to fuel, simple to recycle
 - Every 3 months add 90 kg of TRU to replace what was burned
 - Every 5 years, transfer fuel salt from core to remove fission products, then return to core
 - Fuel salt is 100% contained in 5 layers for 5 years of operation
 - Drive the subcritical core with proton beam
 - Stack of 3 cyclotrons
 - Drives 3 ADSMS cores
 - Modulate current $9 \rightarrow 12$ mA for const P_t
 - 5:1 Energy Amplifier

290 MW ADAM Core

Molten salt fuel:

70 NaCl – 15 TRUCl₃ – 13 UCl₃

Fast fraction 20% E_n>1 MeV


All fuel salt in one vessel

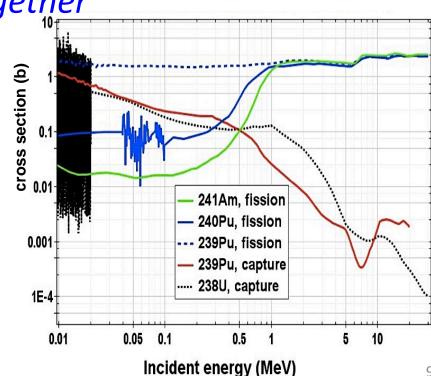
2 m 575 –675 C operating temp

The molten salt chemistry is important

- LiF-based salts were used in the original MSRE, and have been proposed for many designs of critical and subcritical molten salt cores.
- LiF has several problems for a TRU-burner:
 - The light elements moderate the neutron spectrum;
 - Multiple ionization states of TRU elements are metastable, including volatile species (analogs of UF₆).
 - LiF is corrosive, which presents a challenge for the lifetime of core vessel and HX components.
 - Loading the necessary mole% of TRU would push a F-based salt beyond the eutectic limit at reasonable operating temp — TRU salt could drop out of the mixture if the salt freezes.
- All of these issues are resolved by using TRUCl₃-NaCl.

Extracting TRU from UNF fuel bundles

Neutronics for Isoburning


- One batch of UNF has a ton of ²³⁹Pu
- Non-proliferation keep Pu with intensely radioactive ingredients – TRU, FP

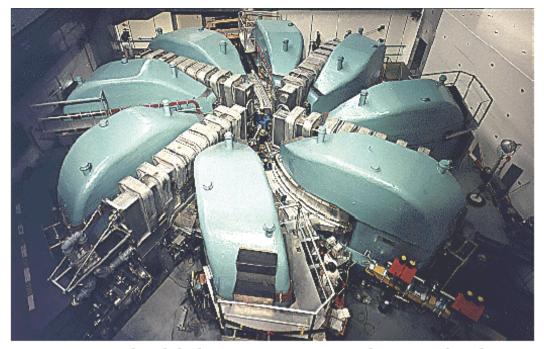
Strategy – we extract all the TRU elements together

from UNF; we destroy them together

 The fission cross-sections for Pu, TRU are equal for $E_n > 1$ MeV

• But for E_n < 1 MeV MA fissions 10 times less than ²³⁹Pu

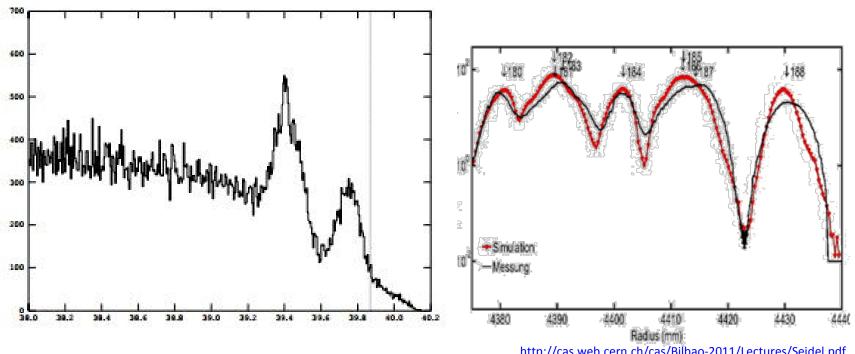
Choice of criticality k_{eff}


- We need to run the core subcritical
 - ²³⁹Pu has 3x fewer delayed neutrons than ²³⁵U
 - 241Am has 5x fewer delayed neutrons than 235U
 - ²³⁹Pu fissions faster than ²⁴¹Am \rightarrow neutronics shifts
 - TRU-burning is a challenge for any critical core design.
- Suppose cooling is lost...
 - Passive heat pipes remove decay heat
 - The salt cannot freeze k_{eff} has strong negative temp coeff.
- Design core to operate with $k_{eff} = 0.97$.
- Core cannot go critical under any of the many failure modes considered.
- But we need lots of proton drive...

NAPAC'13 – MOZAB1

Each 290 MW_t ADAM core requires 3 x 4 mA of 800 MeV proton drive beams, and destroys 130 kg/year of TRU. Each GW_e nuclear plant produces 390 kg/year of TRU. So how do we make 9 x 4 mA of 800 MeV protons?

invented by Ernest Lawrence, 1930 at Berkeley



PSI operates the highest power accelerator in the world: 2.3 mA @ 590 MeV

The **cyclotron** is among the oldest of particle accelerators, and it still holds the world record for the highest beam power -1.3 MW.

Even teenagers can build one:

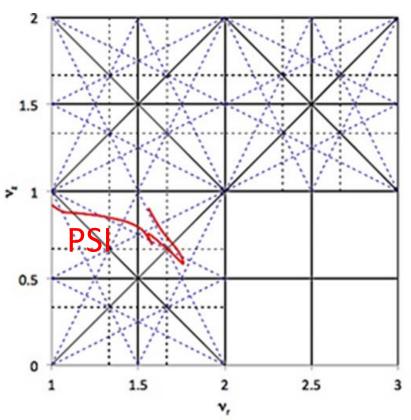
Current limits in cyclotrons: 1) Overlapping bunches in successive orbits

http://www.nscl.msu.edu/~marti/publications/beamdynamics_ganil 98/beamdynamics final.pdf

http://cas.web.cern.ch/cas/Bilbao-2011/Lectures/Seidel.pdf

Overlap of N bunches on successive orbits produces N x greater space charge tune shift, non-linear effects at edges of overlap.

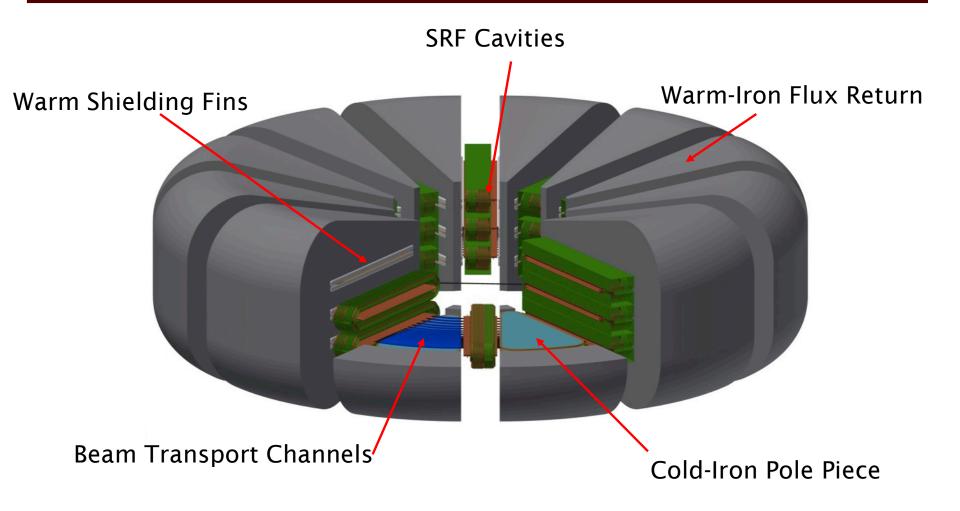
NAPAC'13 - MOZAR1 12


2) Weak focusing, Resonance crossing

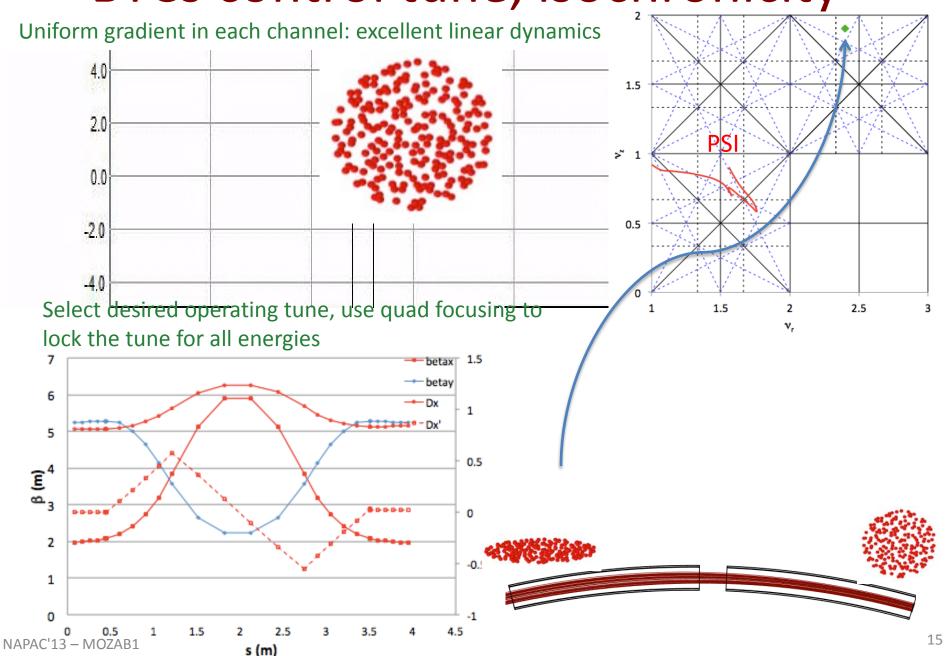
Cyclotrons are intrinsically weakfocusing accelerators

- Rely upon fringe fields
- Low tune requires larger aperture
- Tune evolves during acceleration
- Crosses resonances

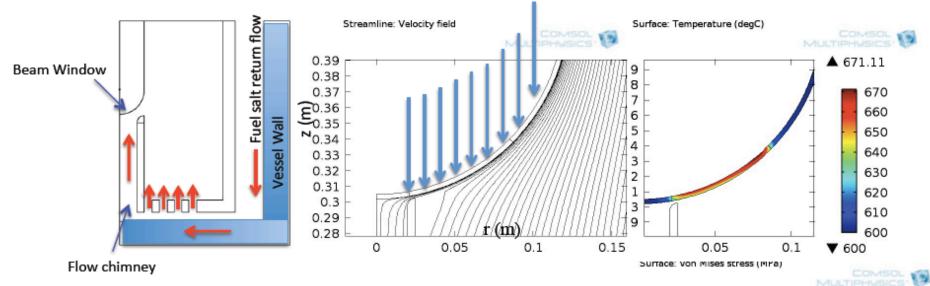
Scaling, Non-scaling FFAG utilize non-linear fields


• Rich spectrum of unstable fixed pts

Space charge shifts, broadens resonances, feeds synchro-betatron Even if a low-charge bunch accelerates smoothly, a high-charge bunch may undergo breakup even during rapid acceleration


NAPAC'13 - MOZAB1

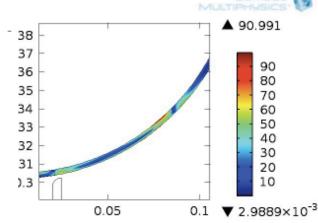
Hence the Strong-Focusing Cyclotron...


- SRF cavities provide 20 MeV/turn energy gain fully separate orbits
- Sectors are simple radial wedges optimum for integrating SRF

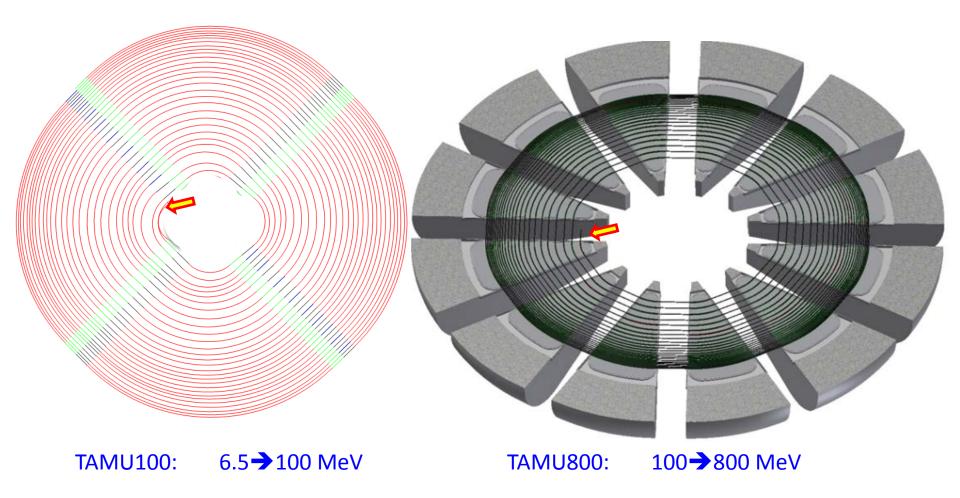
BTCs control tune, isochronicity

We inject 2.8 MW protons through a 3 mm-thick Hastelloy window

We direct a dedicated molten salt flow on the window in the HX circuit.



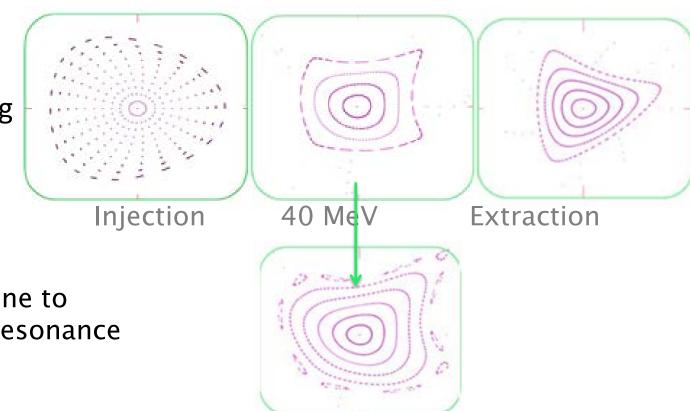
Protons pass through window, deposit most of their energy in molten salt.


~22 kW is deposited in the 3 mm Hastelloy window.

Max temp gradient ~60 C, max von Mises stress ~60 MPa.

Should be fine, we will do experiments to verify.

Control all orbits: betatron tunes, isochronicity, position


If any one of the 10 rf cavities malfunctions, increase gradient in the remaining 9 to maintain energy gain/turn, use trim dipoles in the beam transport channels NATO maintain equilibrium orbit unchanged. Works like a 'spiral linac'.

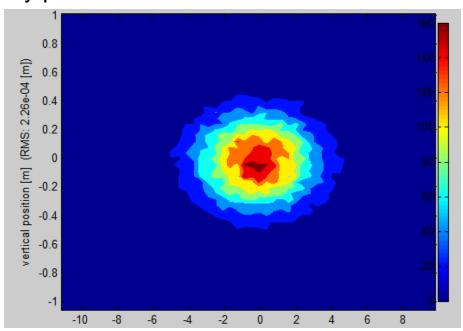
We have simulated spiral transmission line, including x/y coupling, synchrobetatron, space charge Poincare Plots of 1-5 σ contours in TAMU100

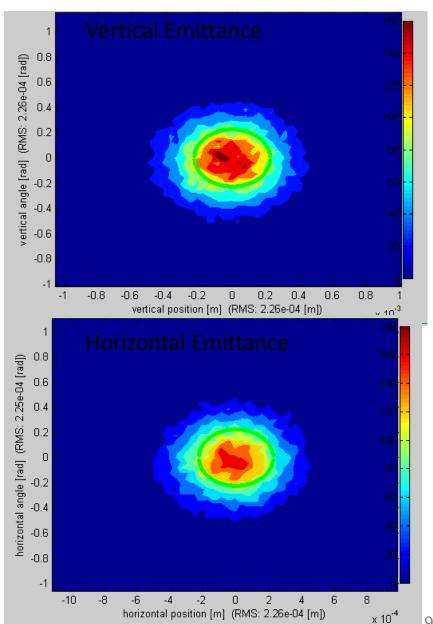
First lock tune to

3.5 mA beam

favorable operating point:

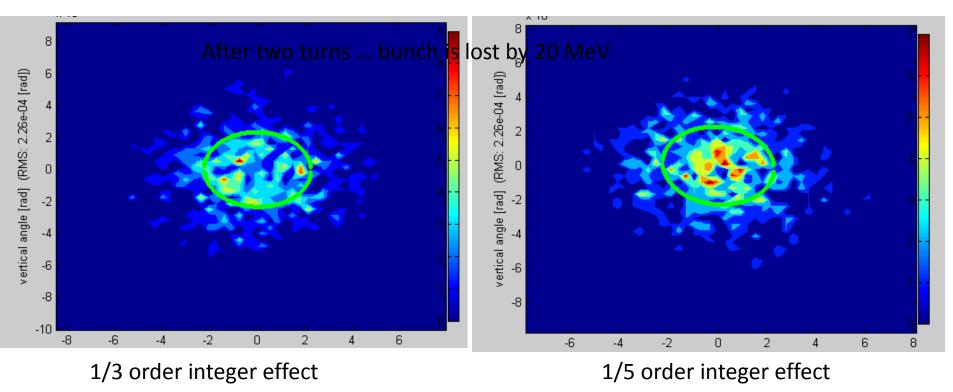
Now change the tune to excite a 7th order resonance


We are seeing the origins of the current limits in PSI from overlapping bunches, tune trajectory. Both are cured in the SFC.


NANextsstudies: beam loading of cavities, wake fields...

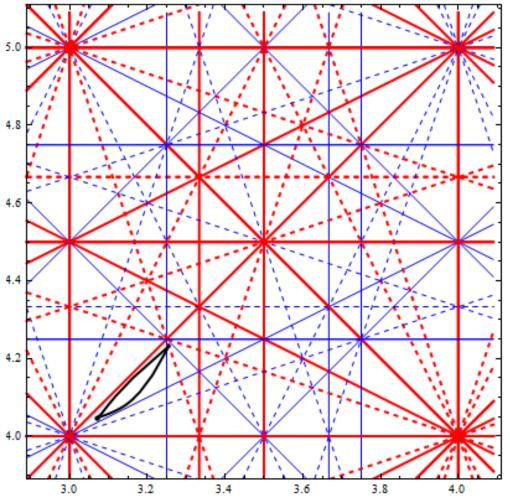
Transverse phase space of 10 mA bunch

First at injection:


x/y profile

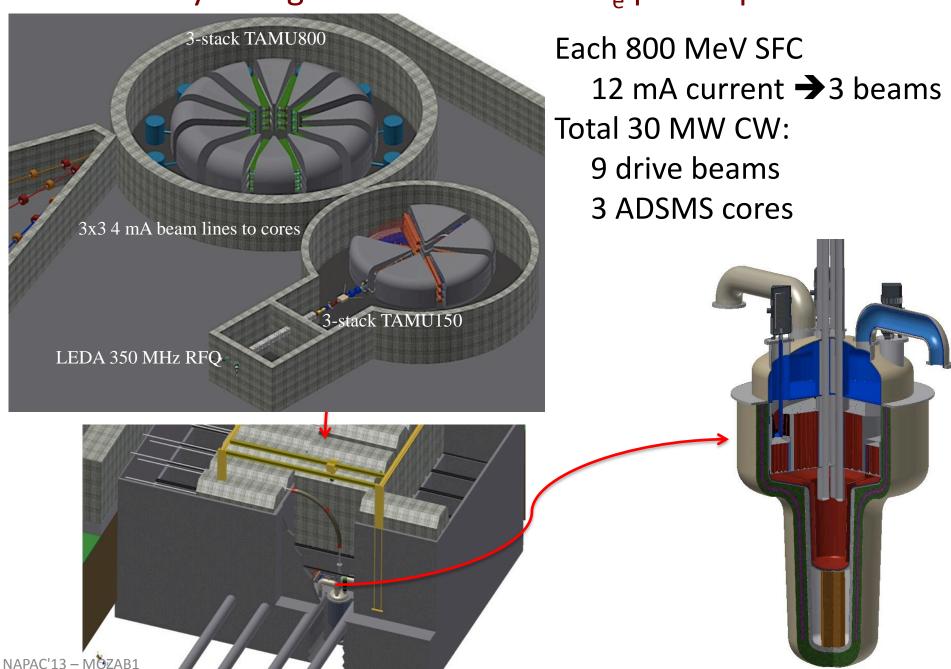
Now look at effects of synchrobetatron and space charge with 10 mA at extraction:

Move tunes near integer fraction resonances to observe growth of islands


1/5-order islands stay clumped, 1/3-order islands are being driven. Likely driving term is edge fields of sectors (6-fold sector geometry). We are evaluating use of sextupoles at sector edges to suppress growth.

NAPAC'13 - MOZAB1

Now find tunes for all particles on the 5 s contour in a 10 mA beam accelerated to 800 MeV:


Since we can control tune using 5.0 BTCs, we can place the operating point so that no $^{4.8}$ significant resonance is crossed by any beam out to 5σ

We are exploring placement of 4 families of sextupole correctors after each sector; We expect that to enable us to push further in current...

NAPAC'13 - MOZAB1

To destroy TRU generated from a GW_e power plant:

Compare performance for TRUburning between ADAM and three flavors of critical fast reactors:

Critical reactors to burn TRU must operate with fast spectrum and non-H coolant/moderator:

Sodium-cooled fast reactor

SFR

High-temperature gas fast reactor GFR

Lead-cooled fast reactor

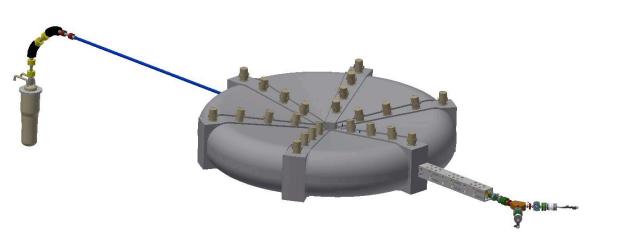
LFR

System	ADAM	SFR	GFR	LFR	
Net TRU Destruction	0.84	0.74	0.76	0.75	g/MW _t -day
			21	180	GWd/tHM
dTRU/TRU	0.056	0.086	0.049	0.048	/year

ADAM burns TRU as well as the best critical core yet designed, it operates with smallest TRU inventory, and it has no potentially disastrous failure modes. 23

Summary: ADAM is a safe, effective method for destroying the TRU in UNF

- One ADAM system destroys TRU at the same rate that it is made by one GW_e nuclear power plant.
- It also generates 280 MW_e of new electric power an energy amplifier with a gain of 5.
- It is safe to operate there are no failure modes that could produce disastrous consequences *see next talk*.
- Estimated cost of one ADAM facility ~\$1 billion, net cost of TRU destruction comparable to nuclear fuel fee.
- But how can we prove the ADAM technology at a cost <<\$B?


We can miniaturize ADAM yet preserve all elements of its performance


Reduce core size

- 560 liters → 60 liters
- Initial operation with lanthanide surrogate fuel no actinides...
- The shift to actinide fuel:
 - Increase TRUCl₃ fraction in the fuel salt $15\% \rightarrow 60\%$
 - Criticality remains the same = 0.97
- Reduce proton drive beam energy 800 MeV → 150 MeV
- - Spallation yield decreases
- 14 **→** 1
- Test all ADAM technology under parameters of full system.
- Total TRU required = 220 kg ~ amount recoverable from EBR2 fuel
- Estimated total project cost \$100 million.

System		SFR	GFR	LFR	SABR		ADAM		
Thermal Power	Q	840	600	840	3000	290	5.46	16.38	M
ADS proton energy	$\mathbf{E_p}$					800	150	150	Mε
ADS beam power	$\mathbf{P}_{\mathbf{p}}$					8	0.5	1.5	M
Net TRU Destruction		0.74	0.76	0.75	1	0.84	1	1	kg
Core Power Density	\mathbf{q}	300	103	77	73	207	64	192	\mathbf{W}
Outlet temperature	T_{max}	510	850	560	650	665	695	695	C
Thermal Efficiency	\mathbf{h}_{th}	38%	45%	43%		44%	44%	44%	
TRU Inventory	T	2250	3420	4078	36000	1733	220	220	kg
Fuel Volume Fraction		22%	10%	12%	15%	100%	100%	100%	
TRU Enrichment	T/U	44-56 %	57%	46-59%	100%	53%	100%	100%	TRU
Fuel Burnup		177	221	180	249	129.5	9.1	22.8	GWd
dTRU/TRU		8.6%	4.9%	4.8%	3.0%	5.6%	1.0%	2.5%	/year

Destroying transuranics is the gift we can give our future generations...

Our plans to make it all happen:

- 2014-2017 Build 70 MeV SFC for medical isotope synthesis
- 2017-2019 Build baby-ADAM
- 2020-2022 Commission with La surrogate fuel
- 2022 Operate baby-ADAM with TRU/U fuel

NAPAC'13 – MOZAB1

Thank You for Listening

