
Burning Weapons Grade Plutonium in Thorium and Uranium with Silicone-Carbide Cladding

Nathan Andrews, Yanin Sukjai,
Koroush Shirvan, Ed Pilat and Mujud S. Kazimi

Center of Advanced Nuclear Energy Systems
Massachusetts Institute of Technology

Presentation Overview

- Motivation
- Metrics for core comparison
- Methods
- Terms and nomenclature
- Results to date
 - PuO₂ in ThO₂ fuel (PuTh)
 - PuO₂ in UO₂ fuel (MOX)
 - All weapons grade plutonium
- Comparison of cores developed
- Necessity for safety analysis

Motivation

Country	Non-civilian Pu (MT)	Civilian Pu (MT)
United States	87.0	0
Russia	128	50.1
France	6.0	57.5
United Kingdom	3.5	91.2
China	1.8	0.014
Japan	0	47.1

- Large amounts of excess weapons and civilian plutonium can be found in various countries
- Taken for the International Panel on Fissile Materials

Metrics for Comparison

- Is SiC an improvement over Zircaloy for the burning of excess weapons Plutonium in PWRs?
 - Once-through burning, using the same reload pattern and the same core power rating
 - Weapons Pu disposition in MOX
 - Weapons Pu disposition in thorium

Metrics

- Fissile fraction (vector) of the discharged Pu
- Fraction of Pu remaining in fuel at discharge
- Proliferation multiples of critical mass for fissile isotopes

Analysis Method

1

Neutronic Analysis (Core Design)

- CASMO/SIMULATE
- Serpent

2

- Fuel Performance Analysis
 - FRAPCON

- Accident Analysis
 - S3K

Analysis Method

- Neutronic Analysis (Core Design)
 - CASMO/SIMULATE
 - Serpent

2

- Fuel Performance Analysis
 - FRAPCON

3

- Accident Analysis
 - S3K

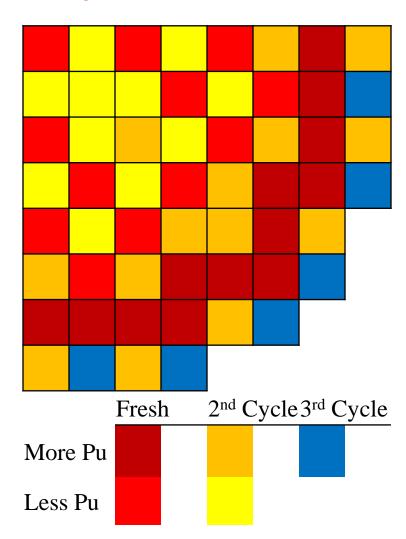
Initial Isotope Comparison

Isotope	Weight Percent
Pu-238	0.012
Pu-239	93.8
Pu-240	5.8
Pu-241	0.23
Pu-242	0.022
Am-241	0.13

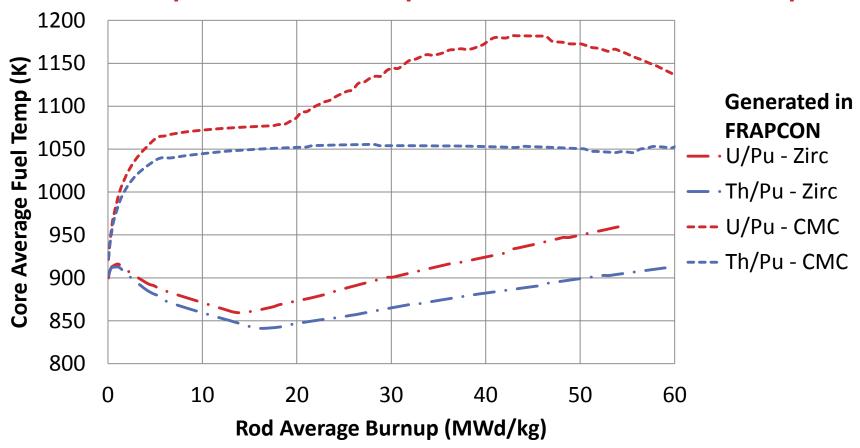
Reactor Grade (~50MWd/kg)

Isotope	Weight Percent		
Pu-238	1.3		
Pu-239	60.2		
Pu-240	24.3		
Pu-241	8.3		
Pu-242	5.1		
Am-241	0.8		

Thorium Cores with Weapons Pu

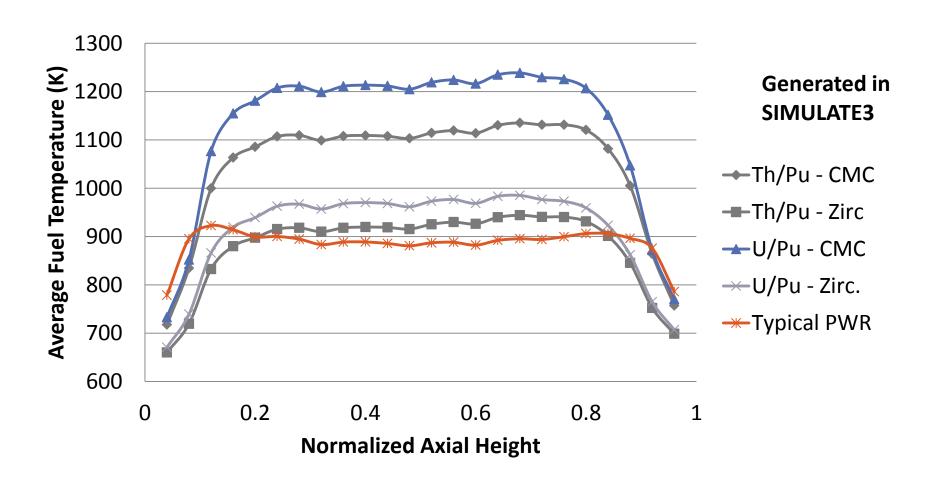

- Assemblies designed and modeled in CASMO
- Core loading pattern developed using SIMULATE
- Designed to meet:

FdH: 1.55


F_Q: 2.0

Cycle burnup: ~492 EFPD

- MTC: <+5 pcm/F at HZP, <0 pcm/F at HFP
- SDM > 1300 pcm with B_4C rods
- Contains two different assembly types
 - Shapes power peaking in the core


Fuel Temperature Dependence on Burnup

Zirc: Temperature initially decreases due to gap closure and then increases due to decrease in fuel thermal conductivity and fission gas release.

CMC: Temperature initially increases due to decrease in cladding thermal conductivity and continues to increase due to presence of an open gap filled with fission gases.

Volume-Averaged Fuel Temperature at EOL

Fuel Pin Specifications

SiC tri-layer tubes are thicker than Zr tubes

Geometry	Zircaloy	SiC
Fuel Pellet Outer Diameter (cm)	0.819	0.781
Cladding Inner Diameter (cm)	0.836	0.798
Cladding Outer Diameter (cm)	0.950	0.950
Pitch (cm)	1.26	1.26
Density (g/cm³)	6.55	2.85

Reactor Conditions

Parameters	4-Loop PWR
Core thermal power (MW)	3587.0
Power density (kW/L)	109.9
Core Coolant flow rate (MT/hr)	67047
System pressure (MPa)	15.5
Core inlet temperature (K)	565.71
Number of fuel assemblies	193
Active Fuel Length (m)	3.66

PWR with Weapons Grade Pu in MOX

- Two different claddings compared
 - SiC
 - Zircaloy
- IFBA used as a burnable poison (zirc. boride coating of 12 micron thickness on ~60% of the fuel pellets)
- Developed to meet the same criteria as the thorium cores
 - Cycle length
 - Safety

Comparison of MOX and Thorium Cores

Fuel	U – Pu	U - Pu	Th – Pu	Th - Pu
Cladding	SiC	Zirc	SiC	Zirc
Cycle Burnup (MWd/kg)	21.5	19.5	23.5	21.3
Plutonium Initial Wt% Heavy Metal	5.69	5.48	6.79	6.51
Pu mass change of a batch - kg	674	629	1452	1455
Percent Pu burned- %	32.7	28.8	64.7	61.4

Comparison of MOX and Thorium Cores

Fuel	U – Pu	U - Pu	Th – Pu	Th - Pu
Cladding	SiC	Zirc	SiC	Zirc
Cycle Burnup (MWd/kg)	21.5	19.5	23.5	21.3
Plutonium Initial Wt% Heavy Metal	5.69	5.48	6.79	6.51
Pu mass change of a batch - kg	676	629	1468	1470
Percent Pu burned- %	32.9	28.8	65.4	62.0

Extending to a Higher Burnup

- Linear theory
 - Direct correlation between the amount of fissile material and the achievable burnup
- Higher burnups enabled by SiC and thorium combination
- Why SiC may extend cycle length
 - Possibly lower corrosion rate
 - Proper application of an EBC
- Currently limiting burnup
 - Zirc limited in terms of residence in water
 - At higher burnups, fuel less
 reactive due to fission products

Max Pin Burnup (MWd/kg)	Wt% Initial Pu	Percent of Initial Pu at Discharge
60	6.4	38.0
80	7.9	32.9
100	9.3	27.8

Comparison of MOX and Thorium

- Percent of Pu Burned
- Vector of Discharged Pu
- Proliferation
 - Multiples of critical mass

Fraction of Initial Plutonium Discharged

Fuel	Clad	Percentage (%)	
Th - Pu	Zircaloy	38.0	
	SiC	34.6	
U -Pu	Zircaloy	71.2	
	SiC	67.1	

- A higher fraction burned is found with SiC
 - Proliferation benefit
 - Economic benefit
- A significant amount of Pu-239 is bred in MOX due to the presence of U-238
 - This decreases the fraction burned

Plutonium Discharge Vectors: Isotopic Percentage of total Pu and Am

Isotope	Initial	Pu - Th	U-Pu
Pu-238	0.012	0.7	0.5
Pu-239	93.8	32.8	52.0
Pu-240	5.8	34.5	27.0
Pu-241	0.23	22.7	15.7
Pu-242	0.022	8.0	3.9
Am-241	0.13	1.2	0.8

Critical Mass Multiples in a Discharged Assembly

Fuel	Clad	Pu	U-233
Th - Pu	Zircaloy	0.53	0.72
	SiC	0.46	0.66
II Do	Zircaloy	0.91	-
U - Pu	SiC	0.80	-

- Critical mass
 - 20 kg of reactor grade Pu
 - 8.4 kg of U-233
- U-233 is inseparable from U-232, which emits strong gamma radiation
- Th-Pu plutonium vector is also preferable, since less fissile material

Safety Analyses, comparison to typical

- Different characteristics of the reactor necessitate new safety analyses
- Delayed neutron fraction is smaller in thorium – (Beta)
- Prompt neutron lifetime is smaller in Thorium
 - Larger if preferable since the reaction is more controllable

Parameter	Typical PWR	Th/Pu	U/Pu
Delayed Neutron Fraction -	0.0061	0.0029	0.0033
Prompt Neutron Lifetime – sec.	16 x 10 ⁻⁶	7.9 x 10 ⁻⁶	7.3 x 10 ⁻⁶

Table parameters at HFP at BOC for CMC clad

Safety Analyses – Coefficients for SiC Cladding

- Fuel temperature coefficient and
 - Amount of negative reactivity feedback when temperature raises
- Moderator temperature coefficient
 - Should always be negative at full power
- Power coefficient is a combination of fuel and moderator feedback

Parameter	Typical PWR	Th/Pu	U/Pu
Fuel Temperature Coefficient - pcm/F	-1.43	-1.43	-1.30
Moderator Temperature Coefficient - pcm/F	-17.9	-18.1	-21.5
Power Coefficient pcm/%	-16.4	-19.5	-19.0

Table parameters at HFP at BOC for CMC clad

Acknowledgement

- This project was performed with support from Lockheed Martin Corporation through MIT Energy Initiative.
- Special thanks are extended to Professor Mujid S. Kazimi, Dr. Ed Pilat and Dr. Koroush Shirvan for their help in this work.

Questions?

Backup Table

Fuel	U– Pu		Th- Pu	
Cladding	SiC	Zirc.	SiC	Zirc.
Cycle Burnup MWd/kg	21.5	19.5	23.5	21.3
Plutonium Initial Wt% Heavy Metal	5.69	5.48	6.79	6.51
Initial Loading Mass Pu - kg	2058	2183	2246	2369
Discharge Mass Pu – kg	1384	1553	793	914
Pu mass change - kg	674	629	1452	1455
Percent Pu burned - %	32.7	28.8	64.7	61.4